Source code for citylearn.data

import logging
import os
from pathlib import Path
from platformdirs import user_cache_dir
import shutil
from typing import Any, Iterable, Mapping, List, Union
import numpy as np
import pandas as pd
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from citylearn.__init__ import __version__
from citylearn.utilities import FileHandler, NoiseUtils

LOGGER = logging.getLogger()
logging.basicConfig(level=logging.INFO)

TOLERANCE = 0.0001
ZERO_DIVISION_PLACEHOLDER = 0.000001
MISC_DIRECTORY = os.path.join(os.path.dirname(__file__), 'misc')
QUERIES_DIRECTORY = os.path.join(MISC_DIRECTORY, 'queries')
SETTINGS_FILEPATH = os.path.join(MISC_DIRECTORY, 'settings.yaml')

[docs] def get_settings(): directory = os.path.join(os.path.join(os.path.dirname(__file__), 'misc')) filepath = os.path.join(directory, 'settings.yaml') settings = FileHandler.read_yaml(filepath) return settings
[docs] class DataSet: """CityLearn input data set and schema class.""" GITHUB_ACCOUNT = 'intelligent-environments-lab' REPOSITORY_NAME = 'CityLearn' REPOSITORY_TAG = f'v{__version__}' REPOSITORY_DATA_PATH = FileHandler.join_url('data') REPOSITORY_DATA_DATASETS_PATH = FileHandler.join_url(REPOSITORY_DATA_PATH, 'datasets') REPOSITORY_DATA_MISC_PATH = FileHandler.join_url(REPOSITORY_DATA_PATH, 'misc') GITHUB_API_CONTENT_URL = FileHandler.join_url('https://api.github.com/repos/', GITHUB_ACCOUNT, REPOSITORY_NAME, 'contents') DEFAULT_CACHE_DIRECTORY = os.path.join(user_cache_dir('citylearn'), REPOSITORY_TAG) BATTERY_CHOICES_FILENAME = 'battery_choices.yaml' PV_CHOICES_FILENAME = 'lbl-tracking_the_sun-res-pv.csv' def __init__(self, github_account: str = None, repository: str = None, tag: str = None, datasets_path: str = None, misc_path: str = None, logging_level: int = None): self.github_account = github_account self.repository = repository self.tag = tag self.datasets_path = datasets_path self.misc_path = misc_path self.logging_level = logging_level @property def github_account(self) -> str: return self.__github_account @property def repository(self) -> str: return self.__repository @property def tag(self) -> str: return self.__tag @property def datasets_path(self) -> str: return self.__datasets_path @property def misc_path(self) -> str: return self.__misc_path @property def cache_directory(self) -> Union[Path, str]: directory = user_cache_dir( appname=self.repository.lower(), appauthor=self.github_account, version=self.tag, ) os.makedirs(directory, exist_ok=True) return directory @property def logging_level(self) -> int: return self.__logging_level @github_account.setter def github_account(self, value: str): self.__github_account = self.GITHUB_ACCOUNT if value is None else value @repository.setter def repository(self, value: str): self.__repository = self.REPOSITORY_NAME if value is None else value @tag.setter def tag(self, value: str): self.__tag = self.REPOSITORY_TAG if value is None else value @datasets_path.setter def datasets_path(self, value: str): self.__datasets_path = self.REPOSITORY_DATA_DATASETS_PATH if value is None else value @misc_path.setter def misc_path(self, value: str): self.__misc_path = self.REPOSITORY_DATA_MISC_PATH if value is None else value @logging_level.setter def logging_level(self, value: int): self.__logging_level = 20 if value is None else value LOGGER.setLevel(self.logging_level)
[docs] def get_schema(self, name: str) -> dict: schema_filepath = self.get_dataset(name) schema = FileHandler.read_json(schema_filepath) schema['root_directory'] = os.path.split(Path(schema_filepath).absolute())[0] return schema
[docs] def get_dataset(self, name: str, directory: Union[Path, str] = None) -> str: datasets_directory = os.path.join(self.cache_directory, 'datasets') root_directory = os.path.join(datasets_directory, name) schema_filepath = os.path.join(root_directory, 'schema.json') path = FileHandler.join_url(self.datasets_path, name) # check that dataset does not already exist using the schema as a proxy LOGGER.info(f'Go here {schema_filepath} ') if not os.path.isfile(schema_filepath): LOGGER.info(f'The {name} dataset DNE in cache. Will download from ' f'{self.github_account}/{self.repository}/tree/{self.tag} GitHub repository and write to {datasets_directory}. ' f'Next time DataSet.get_dataset(\'{name}\') is called, it will read ' 'from cache unless DataSet.clear_cache is run first.') contents = self.get_github_contents(path) if os.path.isdir(root_directory): shutil.rmtree(root_directory) else: pass for c in contents: if c['type'] == 'file': relative_directory_content = c['path'].split(f'{name}/')[-1].split('/')[:-1] content_directory = os.path.join(root_directory, *relative_directory_content) filepath = os.path.join(content_directory, c['name']) os.makedirs(content_directory, exist_ok=True) response = self.get_requests_session().get(c['download_url']) with open(filepath, 'wb') as f: f.write(response.content) else: pass else: pass if directory is not None: os.makedirs(directory, exist_ok=True) shutil.copytree(root_directory, directory, dirs_exist_ok=True) schema_filepath = os.path.join(directory, name, 'schema.json') else: pass return schema_filepath
[docs] def get_dataset_names(self) -> List[str]: contents = self.get_github_contents(self.datasets_path) filepath = os.path.join(self.cache_directory, 'dataset_names.json') if os.path.isfile(filepath): contents = FileHandler.read_json(filepath) else: LOGGER.info(f'The dataset names DNE in cache. Will download from ' f'{self.github_account}/{self.repository}/tree/{self.tag} GitHub repository and write to {filepath}. ' 'Next time DataSet.get_dataset_names is called, it will read ' 'from cache unless DataSet.clear_cache is run first.') contents = [ r['name'] for r in contents if r.get('type') == 'dir' and r.get('path').replace(r['name'], '').strip('/') == self.datasets_path ] FileHandler.write_json(filepath, contents) contents = sorted(contents) return contents
[docs] def get_pv_sizing_data(self) -> pd.DataFrame: """Reads and returns LBNL''s Tracking The Sun dataset that has been prefilered for completeness. Returns ------- data: pd.DataFrame """ misc_directory = os.path.join(self.cache_directory, 'misc') os.makedirs(misc_directory, exist_ok=True) filepath = os.path.join(misc_directory, self.PV_CHOICES_FILENAME) path = FileHandler.join_url(self.misc_path) # check that file DNE if not os.path.isfile(filepath): LOGGER.info(f'The PV sizing data DNE in cache. Will download from ' f'{self.github_account}/{self.repository}/tree/{self.tag} GitHub repository and write to {misc_directory}. ' 'Next time DataSet.get_pv_sizing_data is called, it will read ' 'from cache unless DataSet.clear_cache is run first.') contents = self.get_github_contents(path) url = [f['download_url'] for f in contents if f['name'] == self.PV_CHOICES_FILENAME][0] response = self.get_requests_session().get(url) with open(filepath, 'wb') as f: f.write(response.content) else: pass data = pd.read_csv(filepath, low_memory=False) return data
[docs] def get_battery_sizing_data(self) -> Mapping[str, Union[float, str]]: """Reads and returns internally defined real world manufacturer models. Returns ------- data: Mapping[str, Union[float, str]] """ misc_directory = os.path.join(self.cache_directory, 'misc') os.makedirs(misc_directory, exist_ok=True) filepath = os.path.join(misc_directory, self.BATTERY_CHOICES_FILENAME) path = FileHandler.join_url(self.misc_path) # check that file DNE if not os.path.isfile(filepath): LOGGER.info(f'The battery sizing data DNE in cache. Will download from ' f'{self.github_account}/{self.repository}/tree/{self.tag} GitHub repository and write to {misc_directory}. ' 'Next time DataSet.get_battery_sizing_data is called, it will read ' 'from cache unless DataSet.clear_cache is run first.') contents = self.get_github_contents(path) url = [f['download_url'] for f in contents if f['name'] == self.BATTERY_CHOICES_FILENAME][0] response = self.get_requests_session().get(url) with open(filepath, 'wb') as f: f.write(response.content) else: pass data = FileHandler.read_yaml(filepath) data = pd.DataFrame([{'model': k, **v['attributes']} for k, v in data.items()]) data = data.set_index('model') return data
[docs] def clear_cache(self): if os.path.isdir(self.cache_directory): shutil.rmtree(self.cache_directory) else: pass
[docs] def get_github_contents(self, path: str = None) -> List[Mapping[str, Any]]: url = self.GITHUB_API_CONTENT_URL if path is None else FileHandler.join_url(self.GITHUB_API_CONTENT_URL, path) params = dict(ref=self.tag) contents = self.get_requests_session().get(url, params=params) if contents.status_code == 200: contents = contents.json() else: raise Exception(f'Unable to get response from GitHub API for endpoint: {url}.'\ f'\rReturned status code: {contents.status_code};\rContent: {contents.content}') return contents
[docs] @staticmethod def get_requests_session(**kwargs) -> requests.Session: session = requests.Session() kwargs = { 'total': 5, 'backoff_factor': 1, 'status_forcelist': [400, 502, 503, 504], **kwargs } retries = Retry(**kwargs) session.mount('http://', HTTPAdapter(max_retries=retries)) return session
[docs] class TimeSeriesData: """Generic time series data class. Parameters ---------- variable: np.array, optional A generic time series variable. start_time_step: int, optional Time step to start reading variables. end_time_step: int, optional Time step to end reading variables. """ def __init__(self, variable: Iterable = None, start_time_step: int = None, end_time_step: int = None): self.variable = variable if variable is None else np.array(variable) self.start_time_step = start_time_step self.end_time_step = end_time_step def __getattr__(self, name: str, start_time_step: int = None, end_time_step: int = None): """Returns values of the named variable within the specified time steps and is useful for selecting episode-specific observation.""" # not the most elegant solution tbh try: variable = self.__dict__[f'_{name}'] except KeyError: raise AttributeError(f'_{name}') if isinstance(variable, Iterable): start_time_step = self.start_time_step if start_time_step is None else start_time_step start_index = 0 if start_time_step is None else start_time_step end_time_step = self.end_time_step if end_time_step is None else end_time_step end_index = len(variable) if end_time_step is None else end_time_step + 1 return variable[start_index:end_index] else: return variable def __setattr__(self, name: str, value: Any): """Sets named variable. Variables are named with a single underscore prefix. """ self.__dict__[f'_{name}'] = value
[docs] class EnergySimulation(TimeSeriesData): """`Building` `energy_simulation` data class. Parameters ---------- month : np.array Month time series value ranging from 1 - 12. hour : np.array Hour time series value ranging from 1 - 24. minutes : np.array Minutes time series value ranging from 0 - 60. day_type : np.array Numeric day of week time series ranging from 1 - 8 where 1 - 7 is Monday - Sunday and 8 is reserved for special days e.g. holiday. indoor_dry_bulb_temperature : np.array Average building dry bulb temperature time series in [C]. non_shiftable_load : np.array Total building non-shiftable plug and equipment loads time series in [kWh]. dhw_demand : np.array Total building domestic hot water demand time series in [kWh]. cooling_demand : np.array Total building space cooling demand time series in [kWh]. heating_demand : np.array Total building space heating demand time series in [kWh]. solar_generation : np.array Inverter output per 1 kW of PV system time series in [W/kW]. daylight_savings_status : np.array, optional Daylight saving status time series signal of 0 or 1 indicating inactive or active daylight saving respectively. average_unmet_cooling_setpoint_difference : np.array, optional Average difference between `indoor_dry_bulb_temperature` and cooling temperature setpoints time series in [C]. indoor_relative_humidity : np.array, optional Average building relative humidity time series in [%]. occupant_count: np.array, optional Building occupant count time series in [people]. indoor_dry_bulb_temperature_cooling_set_point: np.array Average building dry bulb temperature cooling set point time series in [C]. indoor_dry_bulb_temperature_heating_set_point: np.array Average building dry bulb temperature heating set point time series in [C]. hvac_mode: np.array, default: 1 Cooling and heating device availability. If 0, both HVAC devices are unavailable (off), if 1, the cooling device is available for space cooling and if 2, the heating device is available for space heating only. Automatic (auto) mode is 3 and allows for either cooling or heating depending on the control action. The default is to set the mode to cooling at all times. The HVAC devices are always available for cooling and heating storage charging irrespective of the hvac mode. power_outage np.array, default: 0 Signal for power outage. If 0, there is no outage and building can draw energy from grid. If 1, there is a power outage and building can only use its energy resources to meet loads. comfort_band np.array, default: 2 Occupant comfort band above the `indoor_dry_bulb_temperature_cooling_set_point` and below the `indoor_dry_bulb_temperature_heating_set_point` [C]. The value is added to and subtracted from the set point to set the upper and lower bounds of comfort bound. start_time_step: int, optional Time step to start reading variables. end_time_step: int, optional Time step to end reading variables. """ DEFUALT_COMFORT_BAND = 2.0 def __init__( self, month: Iterable[int], hour: Iterable[int], day_type: Iterable[int], indoor_dry_bulb_temperature: Iterable[float], non_shiftable_load: Iterable[float], dhw_demand: Iterable[float], cooling_demand: Iterable[float], heating_demand: Iterable[float], solar_generation: Iterable[float], daylight_savings_status: Iterable[int] = None, average_unmet_cooling_setpoint_difference: Iterable[float] = None, indoor_relative_humidity: Iterable[float] = None, occupant_count: Iterable[int] = None, indoor_dry_bulb_temperature_cooling_set_point: Iterable[int] = None, indoor_dry_bulb_temperature_heating_set_point: Iterable[int] = None, hvac_mode: Iterable[int] = None, power_outage: Iterable[int] = None, comfort_band: Iterable[float] = None, start_time_step: int = None, end_time_step: int = None, seconds_per_time_step: int = None, minutes: Iterable[int] = None, time_step_ratios: list[int]= [], noise_std = 0.0 ): super().__init__(start_time_step=start_time_step, end_time_step=end_time_step) self.noise_std = noise_std self.month = np.array(month, dtype='int32') self.hour = np.array(hour, dtype='int32') self.day_type = np.array(day_type, dtype='int32') self.indoor_dry_bulb_temperature = np.clip( np.array(indoor_dry_bulb_temperature, dtype='float32') + NoiseUtils.generate_gaussian_noise(indoor_dry_bulb_temperature, self.noise_std), -90, 57 ) self.non_shiftable_load = np.array(non_shiftable_load, dtype = 'float32') self.dhw_demand = np.array(dhw_demand, dtype = 'float32') # set space demands and check there is not cooling and heating demand at same time step self.cooling_demand = np.array(cooling_demand, dtype = 'float32') self.heating_demand = np.array(heating_demand, dtype = 'float32') assert (self.cooling_demand*self.heating_demand).sum() == 0, 'Cooling and heating in the same time step is not allowed.' self.solar_generation = np.array(solar_generation, dtype = 'float32') + NoiseUtils.generate_gaussian_noise(indoor_dry_bulb_temperature, self.noise_std) # optional self.minutes = np.array(minutes, dtype='int32') if minutes is not None else None # delta between t1 and t2 time_delta = self.hour[1] * 60 - self.hour[0] * 60 # Compute time difference if minutes exist if self.minutes is not None and len(self.minutes) > 1: t0 = self.hour[0] * 60 + self.minutes[0] # Convert to total minutes t1 = self.hour[1] * 60 + self.minutes[1] # Convert to total minutes time_delta = t1 - t0 # Fix negative difference if crossing midnight # Add a full day in minutes if time_delta < 0: time_delta += 1440 base_step_seconds = None if time_delta is not None: # Convert dataset spacing to seconds (guard against zero/negative values) candidate = max(1, time_delta * 60) base_step_seconds = candidate time_step_ratio = ( seconds_per_time_step / base_step_seconds if seconds_per_time_step and base_step_seconds else None ) time_step_ratios.append(time_step_ratio) self.time_step_ratios = time_step_ratios # Store the ratio for this building self.noise_std = noise_std self.daylight_savings_status = np.zeros(len(solar_generation), dtype='int32') if daylight_savings_status is None else np.array(daylight_savings_status, dtype='int32') self.average_unmet_cooling_setpoint_difference = np.zeros(len(solar_generation), dtype='float32') if average_unmet_cooling_setpoint_difference is None else np.array(average_unmet_cooling_setpoint_difference, dtype='float32') self.indoor_relative_humidity = np.zeros(len(solar_generation), dtype='float32') if indoor_relative_humidity is None else np.clip(np.array(indoor_relative_humidity, dtype = 'float32') + NoiseUtils.generate_gaussian_noise(indoor_relative_humidity, self.noise_std),0,100) self.occupant_count = np.zeros(len(solar_generation), dtype='float32') if occupant_count is None else np.array(occupant_count, dtype='float32') self.indoor_dry_bulb_temperature_cooling_set_point = np.zeros(len(solar_generation), dtype='float32') if indoor_dry_bulb_temperature_cooling_set_point is None else np.array(indoor_dry_bulb_temperature_cooling_set_point, dtype='float32') self.indoor_dry_bulb_temperature_heating_set_point = np.zeros(len(solar_generation), dtype='float32') if indoor_dry_bulb_temperature_heating_set_point is None else np.array(indoor_dry_bulb_temperature_heating_set_point, dtype='float32') self.power_outage = np.zeros(len(solar_generation), dtype='float32') if power_outage is None else np.array(power_outage, dtype='float32') self.comfort_band = np.zeros(len(solar_generation), dtype='float32') + self.DEFUALT_COMFORT_BAND if comfort_band is None else np.array(comfort_band, dtype='float32') # set controlled variable defaults self.indoor_dry_bulb_temperature_without_control = self.indoor_dry_bulb_temperature.copy() self.cooling_demand_without_control = self.cooling_demand.copy() self.heating_demand_without_control = self.heating_demand.copy() self.dhw_demand_without_control = self.dhw_demand.copy() self.non_shiftable_load_without_control = self.non_shiftable_load.copy() self.indoor_relative_humidity_without_control = self.indoor_relative_humidity.copy() self.indoor_dry_bulb_temperature_cooling_set_point_without_control = self.indoor_dry_bulb_temperature_cooling_set_point.copy() self.indoor_dry_bulb_temperature_heating_set_point_without_control = self.indoor_dry_bulb_temperature_heating_set_point.copy() if hvac_mode is None: hvac_mode = np.zeros(len(solar_generation), dtype='int32') + 1 else: unique = list(set(hvac_mode)) for i in range(4): try: unique.remove(i) except ValueError: pass assert len(unique) == 0, f'Invalid hvac_mode values were found: {unique}. '\ 'Valid values are 0, 1, 2, 3 to indicate off, cooling mode, heating mode, and automatic mode.' self.hvac_mode = np.array(hvac_mode, dtype='int32') @property def time_step_ratios(self): """Getter for the time_step_ratio variable.""" return self.__time_step_ratios @time_step_ratios.setter def time_step_ratios(self, value): """Setter for the time_step_ratio variable.""" self.__time_step_ratios = value
[docs] class LogisticRegressionOccupantParameters(TimeSeriesData): def __init__(self, a_increase: Iterable[float], b_increase: Iterable[float], a_decrease: Iterable[float], b_decrease: Iterable[float], start_time_step: int = None, end_time_step: int = None): super().__init__(start_time_step=start_time_step, end_time_step=end_time_step) self.a_increase = np.array(a_increase, dtype='float32') self.b_increase = np.array(b_increase, dtype='float32') self.a_decrease = np.array(a_decrease, dtype='float32') self.b_decrease = np.array(b_decrease, dtype='float32') self.occupant_interaction_indoor_dry_bulb_temperature_set_point_delta = np.zeros(len(self.a_increase), dtype='float32') self.occupant_interaction_indoor_dry_bulb_temperature_set_point_delta_without_control = np.zeros(len(self.a_increase), dtype='float32')
[docs] class Weather(TimeSeriesData): """`Building` `weather` data class. Parameters ---------- outdoor_dry_bulb_temperature : np.array Outdoor dry bulb temperature time series in [C]. outdoor_relative_humidity : np.array Outdoor relative humidity time series in [%]. diffuse_solar_irradiance : np.array Diffuse solar irradiance time series in [W/m^2]. direct_solar_irradiance : np.array Direct solar irradiance time series in [W/m^2]. outdoor_dry_bulb_temperature_predicted_1 : np.array Outdoor dry bulb temperature `n` hours ahead prediction time series in [C]. `n` can be any number of hours and is typically 6 hours in existing datasets. outdoor_dry_bulb_temperature_predicted_2 : np.array Outdoor dry bulb temperature `n` hours ahead prediction time series in [C]. `n` can be any number of hours and is typically 12 hours in existing datasets. outdoor_dry_bulb_temperature_predicted_3 : np.array Outdoor dry bulb temperature `n` hours ahead prediction time series in [C]. `n` can be any number of hours and is typically 24 hours in existing datasets. outdoor_relative_humidity_predicted_1 : np.array Outdoor relative humidity `n` hours ahead prediction time series in [%]. `n` can be any number of hours and is typically 6 hours in existing datasets. outdoor_relative_humidity_predicted_2 : np.array Outdoor relative humidity `n` hours ahead prediction time series in [%]. `n` can be any number of hours and is typically 12 hours in existing datasets. outdoor_relative_humidity_predicted_3 : np.array Outdoor relative humidity `n` hours ahead prediction time series in [%]. `n` can be any number of hours and is typically 24 hours in existing datasets. diffuse_solar_irradiance_predicted_1 : np.array Diffuse solar irradiance `n` hours ahead prediction time series in [W/m^2]. `n` can be any number of hours and is typically 6 hours in existing datasets. diffuse_solar_irradiance_predicted_2 : np.array Diffuse solar irradiance `n` hours ahead prediction time series in [W/m^2]. `n` can be any number of hours and is typically 12 hours in existing datasets. diffuse_solar_irradiance_predicted_3 : np.array Diffuse solar irradiance `n` hours ahead prediction time series in [W/m^2]. `n` can be any number of hours and is typically 24 hours in existing datasets. direct_solar_irradiance_predicted_1 : np.array Direct solar irradiance `n` hours ahead prediction time series in [W/m^2]. `n` can be any number of hours and is typically 6 hours in existing datasets. direct_solar_irradiance_predicted_2 : np.array Direct solar irradiance `n` hours ahead prediction time series in [W/m^2]. `n` can be any number of hours and is typically 12 hours in existing datasets. direct_solar_irradiance_predicted_3 : np.array Direct solar irradiance `n` hours ahead prediction time series in [W/m^2]. `n` can be any number of hours and is typically 24 hours in existing datasets. start_time_step: int, optional Time step to start reading variables. end_time_step: int, optional Time step to end reading variables. """ def __init__( self, outdoor_dry_bulb_temperature: Iterable[float], outdoor_relative_humidity: Iterable[float], diffuse_solar_irradiance: Iterable[float], direct_solar_irradiance: Iterable[float], outdoor_dry_bulb_temperature_predicted_1: Iterable[float], outdoor_dry_bulb_temperature_predicted_2: Iterable[float], outdoor_dry_bulb_temperature_predicted_3: Iterable[float], outdoor_relative_humidity_predicted_1: Iterable[float], outdoor_relative_humidity_predicted_2: Iterable[float], outdoor_relative_humidity_predicted_3: Iterable[float], diffuse_solar_irradiance_predicted_1: Iterable[float], diffuse_solar_irradiance_predicted_2: Iterable[float], diffuse_solar_irradiance_predicted_3: Iterable[float], direct_solar_irradiance_predicted_1: Iterable[float], direct_solar_irradiance_predicted_2: Iterable[float], direct_solar_irradiance_predicted_3: Iterable[float], start_time_step: int = None, end_time_step: int = None, noise_std: float = 0.0 ): super().__init__(start_time_step=start_time_step, end_time_step=end_time_step) self.noise_std = noise_std self.outdoor_dry_bulb_temperature = np.array(outdoor_dry_bulb_temperature, dtype='float32') self.outdoor_relative_humidity = np.array(outdoor_relative_humidity, dtype='float32') self.diffuse_solar_irradiance = np.array(diffuse_solar_irradiance, dtype='float32') self.direct_solar_irradiance = np.array(direct_solar_irradiance, dtype='float32') # Add stochastic behavior by adding Gaussian noise to the data self.outdoor_dry_bulb_temperature += NoiseUtils.generate_gaussian_noise(self.outdoor_dry_bulb_temperature, self.noise_std) self.outdoor_relative_humidity += NoiseUtils.generate_gaussian_noise(self.outdoor_relative_humidity, self.noise_std) self.diffuse_solar_irradiance += NoiseUtils.generate_gaussian_noise(self.diffuse_solar_irradiance, self.noise_std) self.direct_solar_irradiance += NoiseUtils.generate_gaussian_noise(self.direct_solar_irradiance, self.noise_std) # Predicted weather values (could also introduce noise here) self.outdoor_dry_bulb_temperature_predicted_1 = np.array(outdoor_dry_bulb_temperature_predicted_1, dtype='float32') + NoiseUtils.generate_gaussian_noise(outdoor_dry_bulb_temperature_predicted_1, self.noise_std) self.outdoor_dry_bulb_temperature_predicted_2 = np.array(outdoor_dry_bulb_temperature_predicted_2, dtype='float32') + NoiseUtils.generate_gaussian_noise(outdoor_dry_bulb_temperature_predicted_2, self.noise_std) self.outdoor_dry_bulb_temperature_predicted_3 = np.array(outdoor_dry_bulb_temperature_predicted_3, dtype='float32') + NoiseUtils.generate_gaussian_noise(outdoor_dry_bulb_temperature_predicted_3, self.noise_std) self.outdoor_relative_humidity_predicted_1 = np.array(outdoor_relative_humidity_predicted_1, dtype='float32') + NoiseUtils.generate_gaussian_noise(outdoor_relative_humidity_predicted_1, self.noise_std) self.outdoor_relative_humidity_predicted_2 = np.array(outdoor_relative_humidity_predicted_2, dtype='float32') + NoiseUtils.generate_gaussian_noise(outdoor_relative_humidity_predicted_2, self.noise_std) self.outdoor_relative_humidity_predicted_3 = np.array(outdoor_relative_humidity_predicted_3, dtype='float32') + NoiseUtils.generate_gaussian_noise(outdoor_relative_humidity_predicted_3, self.noise_std) self.diffuse_solar_irradiance_predicted_1 = np.array(diffuse_solar_irradiance_predicted_1, dtype='float32') + NoiseUtils.generate_gaussian_noise(diffuse_solar_irradiance_predicted_1, self.noise_std) self.diffuse_solar_irradiance_predicted_2 = np.array(diffuse_solar_irradiance_predicted_2, dtype='float32') + NoiseUtils.generate_gaussian_noise(diffuse_solar_irradiance_predicted_2, self.noise_std) self.diffuse_solar_irradiance_predicted_3 = np.array(diffuse_solar_irradiance_predicted_3, dtype='float32') + NoiseUtils.generate_gaussian_noise(diffuse_solar_irradiance_predicted_3, self.noise_std) self.direct_solar_irradiance_predicted_1 = np.array(direct_solar_irradiance_predicted_1, dtype='float32') + NoiseUtils.generate_gaussian_noise(direct_solar_irradiance_predicted_1, self.noise_std) self.direct_solar_irradiance_predicted_2 = np.array(direct_solar_irradiance_predicted_2, dtype='float32') + NoiseUtils.generate_gaussian_noise(direct_solar_irradiance_predicted_2, self.noise_std) self.direct_solar_irradiance_predicted_3 = np.array(direct_solar_irradiance_predicted_3, dtype='float32') + NoiseUtils.generate_gaussian_noise(direct_solar_irradiance_predicted_3, self.noise_std)
[docs] class Pricing(TimeSeriesData): """`Building` `pricing` data class. Parameters ---------- electricity_pricing : np.array Electricity pricing time series in [$/kWh]. electricity_pricing_predicted_1 : np.array Electricity pricing `n` hours ahead prediction time series in [$/kWh]. `n` can be any number of hours and is typically 1 or 6 hours in existing datasets. electricity_pricing_predicted_2 : np.array Electricity pricing `n` hours ahead prediction time series in [$/kWh]. `n` can be any number of hours and is typically 2 or 12 hours in existing datasets. electricity_pricing_predicted_3 : np.array Electricity pricing `n` hours ahead prediction time series in [$/kWh]. `n` can be any number of hours and is typically 3 or 24 hours in existing datasets. start_time_step: int, optional Time step to start reading variables. end_time_step: int, optional Time step to end reading variables. """ def __init__( self, electricity_pricing: Iterable[float], electricity_pricing_predicted_1: Iterable[float], electricity_pricing_predicted_2: Iterable[float], electricity_pricing_predicted_3: Iterable[float], start_time_step: int = None, end_time_step: int = None, noise_std: float = 0.0 ): super().__init__(start_time_step=start_time_step, end_time_step=end_time_step) self.noise_std = noise_std self.electricity_pricing = np.clip(np.array(electricity_pricing, dtype='float32') + NoiseUtils.generate_gaussian_noise(electricity_pricing, self.noise_std), 0, 1) self.electricity_pricing_predicted_1 = np.clip(np.array(electricity_pricing_predicted_1, dtype='float32') + NoiseUtils.generate_gaussian_noise(electricity_pricing_predicted_1, self.noise_std), 0, 1) self.electricity_pricing_predicted_2 = np.clip(np.array(electricity_pricing_predicted_2, dtype='float32') + NoiseUtils.generate_gaussian_noise(electricity_pricing_predicted_2, self.noise_std), 0, 1) self.electricity_pricing_predicted_3 = np.clip(np.array(electricity_pricing_predicted_3, dtype='float32') + NoiseUtils.generate_gaussian_noise(electricity_pricing_predicted_3, self.noise_std), 0, 1)
[docs] def as_dict(self, time_step) -> dict: """Return a dictionary representation of the current pricing data. Returns ------- dict Dictionary containing current electricity pricing and predictions, with keys matching the class attribute names. """ return { 'electricity_pricing-$/kWh': self.electricity_pricing[time_step], 'electricity_pricing_predicted_1-$/kWh': self.electricity_pricing_predicted_1[time_step], 'electricity_pricing_predicted_2-$/kWh': self.electricity_pricing_predicted_2[time_step], 'electricity_pricing_predicted_3-$/kWh': self.electricity_pricing_predicted_3[time_step], }
[docs] class CarbonIntensity(TimeSeriesData): """`Building` `carbon_intensity` data class. Parameters ---------- carbon_intensity : np.array Grid carbon emission rate time series in [kg_co2/kWh]. start_time_step: int, optional Time step to start reading variables. end_time_step: int, optional Time step to end reading variables. """ def __init__(self, carbon_intensity: Iterable[float], start_time_step: int = None, end_time_step: int = None, noise_std: float = 0.0): self.noise_std = noise_std super().__init__(start_time_step=start_time_step, end_time_step=end_time_step) self.carbon_intensity = np.clip(np.array(carbon_intensity, dtype='float32') + NoiseUtils.generate_gaussian_noise(carbon_intensity, self.noise_std),0,1)
[docs] class ChargerSimulation(TimeSeriesData): """Charger-centric electric vehicle simulation data class. This class models the charging schedule of electric vehicles from the perspective of a specific charger, with one entry per timestep indicating the state of a connected or incoming EV. Attributes ---------- electric_vehicle_charger_state : np.array State of the electric vehicle: 1: 'Parked, plugged in, and ready to charge' 2: 'Incoming to a charger' 3: 'Commuting (vehicle is away)' electric_vehicle_id : np.array Identifier for the electric vehicle. electric_vehicle_battery_capacity_kwh : np.array Battery capacity of the vehicle (in kilowatt-hours). current_soc : np.array Current state-of-charge of the EV battery at the charger (normalized [0, 1]). This is calculated from the raw kWh value divided by capacity. electric_vehicle_departure_time : np.array Number of time steps expected until the EV departs from the charger (only for state 1). Defaults to -1 when not present. electric_vehicle_required_soc_departure : np.array Target SOC percentage required for the EV at departure time (only for state 1), normalized to the [0, 1] range and with added Gaussian noise if provided. Defaults to -0.1 when not present. electric_vehicle_estimated_arrival_time : np.array Number of time steps expected until the EV arrives at the charger (only for state 2). Defaults to -1 when not present. electric_vehicle_estimated_soc_arrival : np.array Estimated SOC percentage at the time of arrival to the charger (only for state 2), normalized to the [0, 1] range and with optional Gaussian noise. Defaults to -0.1 when not present. """ def __init__( self, electric_vehicle_charger_state: Iterable[int], electric_vehicle_id: Iterable[str], electric_vehicle_battery_capacity_khw: Iterable[float], current_soc: Iterable[float], electric_vehicle_departure_time: Iterable[float], electric_vehicle_required_soc_departure: Iterable[float], electric_vehicle_estimated_arrival_time: Iterable[float], electric_vehicle_estimated_soc_arrival: Iterable[float], start_time_step: int = None, end_time_step: int = None, noise_std: float = 1.0 ): """Initialize ChargerSchedule from charger-centric EV CSV input.""" super().__init__(start_time_step=start_time_step, end_time_step=end_time_step) self.noise_std = noise_std default_time_value = -1 default_soc_value = -0.1 self.electric_vehicle_charger_state = np.array([ int(str(s)) if str(s).isdigit() else np.nan for s in electric_vehicle_charger_state ], dtype=float) self.electric_vehicle_id = np.array(electric_vehicle_id, dtype=object) self.electric_vehicle_battery_capacity_kwh = np.array( electric_vehicle_battery_capacity_khw, dtype=float ) current_soc_arr = np.array(current_soc, dtype=float) current_soc_arr = np.where(np.isnan(current_soc_arr), default_soc_value, current_soc_arr) self.current_soc = np.clip( current_soc_arr / self.electric_vehicle_battery_capacity_kwh, 0, 1 ) departure_time_arr = np.array(electric_vehicle_departure_time, dtype=float) self.electric_vehicle_departure_time = np.where( np.isnan(departure_time_arr), default_time_value, departure_time_arr ).astype(int) arrival_time_arr = np.array(electric_vehicle_estimated_arrival_time, dtype=float) self.electric_vehicle_estimated_arrival_time = np.where( np.isnan(arrival_time_arr), default_time_value, arrival_time_arr ).astype(int) required_soc_arr = np.array(electric_vehicle_required_soc_departure, dtype=float) required_soc_arr = np.where(np.isnan(required_soc_arr), default_soc_value, required_soc_arr) self.electric_vehicle_required_soc_departure = np.where( required_soc_arr != default_soc_value, np.clip( required_soc_arr / 100 + (NoiseUtils.generate_gaussian_noise(required_soc_arr, self.noise_std) / 100), 0, 1 ), required_soc_arr ) estimated_soc_arrival_arr = np.array(electric_vehicle_estimated_soc_arrival, dtype=float) estimated_soc_arrival_arr = np.where(np.isnan(estimated_soc_arrival_arr), default_soc_value, estimated_soc_arrival_arr) self.electric_vehicle_estimated_soc_arrival = np.where( estimated_soc_arrival_arr != default_soc_value, np.clip( estimated_soc_arrival_arr / 100 + (NoiseUtils.generate_gaussian_noise(estimated_soc_arrival_arr, self.noise_std) / 100), 0, 1 ), estimated_soc_arrival_arr )
[docs] class WashingMachineSimulation(TimeSeriesData): """Washing Machine Simulation data class. Attributes ---------- day_type : np.array Type of the day (e.g., weekday/weekend). hour : np.array Hour of the day when the washing machine is scheduled. start_time_step : np.array Start time step of the washing machine usage. end_time_step : np.array End time step of the washing machine usage. load_profile : np.array List of power consumption values during the washing machine's cycle. """ def __init__( self, day_type: Iterable[int], hour: Iterable[int], wm_start_time_step: Iterable[int], wm_end_time_step: Iterable[int], load_profile: Iterable[str], start: int = None, end: int = None ): """Initialize WashingMachineSimulation.""" super().__init__(start_time_step=start, end_time_step=end) default_time_value = -1 self.day_type = np.array(day_type, dtype=int) self.hour = np.array(hour, dtype=int) start_time_step_arr = np.array(wm_start_time_step, dtype=float) end_time_step_arr = np.array(wm_end_time_step, dtype=float) self.wm_start_time_step = np.where(np.isnan(start_time_step_arr), default_time_value, start_time_step_arr).astype(int) self.wm_end_time_step = np.where(np.isnan(end_time_step_arr), default_time_value, end_time_step_arr).astype(int) # Parse load_profile strings like '[10,20,30]' into lists of floats def parse_profile(profile_str): try: return np.array(eval(profile_str), dtype=float) except: return np.array([], dtype=float) self.load_profile = np.array([parse_profile(lp) for lp in load_profile], dtype=object)